Very short-term wind speed forecasting with Bayesian structural break model

نویسندگان

  • Yu Jiang
  • Zhe Song
  • Andrew Kusiak
چکیده

This paper examines a new time series method for very short-term wind speed forecasting. The time series forecasting model is based on Bayesian theory and structural break modeling, which could incorporate domain knowledge about wind speed as a prior. Besides this Bayesian structural break model predicts wind speed as a set of possible values, which is different from classical time series model’s single-value prediction This set of predicted values could be used for various applications, such as wind turbine predictive control, wind power scheduling. The proposed model is tested with actual wind speed data collected from utility-scale wind turbines. 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short and Mid-Term Wind Power Plants Forecasting With ANN

In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...

متن کامل

Short and Mid-Term Wind Power Plants Forecasting With ANN

In recent years, wind energy has a remarkable growth in the world, but one of the important problems of power generated from wind is its uncertainty and corresponding power. For solving this problem, some approaches have been presented. Recently, the Artificial Neural Networks (ANN) as a heuristic method has more applications for this propose. In this paper, short-term (1 hour) and mid-term (24...

متن کامل

A Hybrid Method for Short-Term Wind Speed Forecasting

The accuracy of short-term wind speed prediction is very important for wind power generation. In this paper, a hybrid method combining ensemble empirical mode decomposition (EEMD), adaptive neural network based fuzzy inference system (ANFIS) and seasonal auto-regression integrated moving average (SARIMA) is presented for short-term wind speed forecasting. The original wind speed series is decom...

متن کامل

An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power

Currently, among renewable distributed generation systems, wind generators are receiving a great deal of interest due to the great economic, technological, and environmental incentives they involve. However, the uncertainties due to the intermittent nature of wind energy make it difficult to operate electrical power systems optimally and make decisions that satisfy the needs of all the stakehol...

متن کامل

Improved Spatio-Temporal Linear Models for Very Short-Term Wind Speed Forecasting

In this paper, the spatio-temporal (multi-channel) linear models, which use temporal and the neighbouring wind speed measurements around the target location, for the best short-term wind speed forecasting are investigated. Multi-channel autoregressive moving average (MARMA) models are formulated in matrix form and efficient linear prediction coefficient estimation techniques are first used and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012